
An Analysis of SMP Memory Allocators:
MapReduce on Large Shared-Memory Systems

Robert Döbbelin, Thorsten Schütt, Alexander Reinefeld

Zuse Institute Berlin

September 10, 2012

1 / 11

SGI Altix UltraViolett (UV) 1000

32 blades in one rack

2×8 cores per blade

64 GB memory per blade

Intel Xeon
X7560
(8 cores)

Intel Xeon
X7560
(8 cores)

HUB

32 GB
DDR3
RAM

32 GB
DDR3
RAM

QPI

QPI

NUMAlink5
to other blades

QPI for memory on same blade

inter-blade communication via NUMAlink5

2 / 11

SGI Altix UltraViolett (UV) 1000

32 blades in one rack

2×8 cores per blade

64 GB memory per blade

Intel Xeon
X7560
(8 cores)

Intel Xeon
X7560
(8 cores)

HUB

32 GB
DDR3
RAM

32 GB
DDR3
RAM

QPI

QPI

NUMAlink5
to other blades

QPI for memory on same blade

inter-blade communication via NUMAlink5

2 / 11

Memory allocation

First-touch policy

When a process requests memory from the OS

threads gets (unmapped) virtual address

page fault on first touch

OS allocates physical pages to NUMA node on which accessing
thread is running

Once a virtual address is mapped, this mapping persists until the page is
released to the OS.

3 / 11

Memory allocation

Successive malloc/free operations

malloc: Thread A gets virtual page
and touches it

free: page may be released to the
allocators cache

malloc: Thread D gets this page

T
h

re
ad

A

T
h

re
ad

B

T
h

re
ad

C

T
h

re
ad

D

Process

Allocator

OS?

4 / 11

Memory allocation

Successive malloc/free operations

malloc: Thread A gets virtual page
and touches it

free: page may be released to the
allocators cache

malloc: Thread D gets this page

T
h

re
ad

A

T
h

re
ad

B

T
h

re
ad

C

T
h

re
ad

D

Process

Allocator

OS

A

4 / 11

Memory allocation

Successive malloc/free operations

malloc: Thread A gets virtual page
and touches it

free: page may be released to the
allocators cache

malloc: Thread D gets this page

T
h

re
ad

A

T
h

re
ad

B

T
h

re
ad

C

T
h

re
ad

D

Process

Allocator

OS

A

4 / 11

Memory allocation

Successive malloc/free operations

malloc: Thread A gets virtual page
and touches it

free: page may be released to the
allocators cache

malloc: Thread D gets this page

Thread D got remote memory from the allo-
cator!

T
h

re
ad

A

T
h

re
ad

B

T
h

re
ad

C

T
h

re
ad

D

Process

Allocator

OS

A

4 / 11

MapReduce

MapReduce workflow

MapReduce stages

map: apply map-function to input

shuffle: merge partitions

reduce: apply reduce-function to all
kv-pairs with the same key

...

...

...

map

combine (opt)

shuffle

reduce

...

...

size of buffers unknown a priori

iterative MapReduce: output of one MR step is input for the next

5 / 11

MapReduce

How to speed things up?

Memory allocators for SMPs (tbbmalloc)

provide fast concurrent allocations

Memory reuse (reuse)

reuse buffers for subsequent MapReduce iterations

Memory preallocation (prealloc)

allocate needed amount of memory for each buffer

6 / 11

Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

7 15 31 61 127

re
la

ti
v
e
 s

p
e
e
d
u
p

threads

glibc
reuse
tbbmalloc
tbb_pool
prealloc

MR-Search with various allocators. Speedup is relative to glibc.

Significant speedup if more than one blade is used.

7 / 11

Evaluation

 0

 100

 200

 300

 400

 500

 600

glibc reuse tbbmalloc tbb_pool prealloc

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000
se

n
t

d
a
ta

 [
G

B
y
te

]

ti
m

e
 [

s]

time

NUMA traffic and runtime with various allocators (127 Threads).

Traffic on NUMAlink traced with Performance Co-Pilot

TBB does not prevent remote memory

8 / 11

Evaluation

NUMA traffic and runtime with various allocators (127 Threads).

Traffic on NUMAlink traced with Performance Co-Pilot

TBB does not prevent remote memory

8 / 11

Evaluation

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

sp
e
e
d

u
p

cores

perfect speedup
prealloc, MR only
prealloc

tbbmalloc
reuse
glibc

Scalability with various allocators.
9 / 11

Evaluation

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500

sp
e
e
d

u
p

cores

perfect speedup
MPI, Cluster
MPI, UV
OpenMP, UV, prealloc, MR only

Comparing scalability: OpenMP vs. explicit message passing
10 / 11

Summary

Summary

It is not that easy to write scalable code for large SMPs.

large variability of memory access costs on large SMPs

allocators for SMPs help to increase scalability

they do not prevent remote memory

programmer needs to keep track of memory location (if possible)

11 / 11

	Memory allocation
	MapReduce
	Evaluation
	Summary

